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How Prices Respond to Worked Orders

Abstract
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and inventory costs, and (3) under most circumstances, the speed of execution
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in markets (and the dramatic effects these orders have had on order flow
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I. INTRODUCTION

In financial markets, large orders are often “worked” when transacted, i.e.,
they are split into small pieces and executed over a period of time. Working
an order has become standard practice in recent years—even for modest sized
orders—due to the widespread adoption of electronic trading.1 It is now cheap,
fast, and relatively easy to program a computer to slice and execute an order
automatically, whereas in the past, this task would have required the services of
someone positioned on the exchange floor.2 Despite their current prominence
in markets, little is understood theoretically about how worked orders should
influence prices. This is mainly because the original microstructure models of
price formation were developed before working an order was common practice.

In this paper, we analyze how prices respond to worked orders by applying a
structural model of price formation to an order that is incrementally executed.
Qualitatively, our results match nicely with the following empirical findings:3

(1) Prices respond more to the earlier pieces of the order than to the later
pieces, so that price impact is a nonlinear and concave function of the
total order size.

(2) Prices revert, at least partially, after the order completes.

(3) Slowly transacting the order results in lower transaction costs.

A plot of the typical price response is shown in Fig. 1.

Unfortunately, few previous papers have focused on explaining the origin of
these results, which has led to some confusion in the literature. Many papers
that model or estimate price response assume, contrary to (1), that price
impact must be linear.4 In addition, it is largely assumed and accepted that

1The average transaction size on the NYSE has dropped by a factor of three in the
past five years to approximately 300 shares per trade (Angel, Harris, and Spatt (2010)).
This result suggests that most orders above 300 shares (approx. $10, 000) are now worked.
Fig. 3 in Chordia, Roll, and Subrahmanyam (2010) reports that the dollar fraction of small
transactions on the NYSE (transactions less than $10, 000) has exploded from 5% to over
60% in the past ten years.

2Automated order execution is often called algorithmic trading ; although algorithmic
trading is sometimes used to refer to any type of automated trading, including automated
liquidity provision.

3See Torre (1997), Almgren et al. (2005), Gerig (2007), Yuen (2007), and Moro et al.
(2009)

4The linear assumption is often made for simplicity—only a standard regression is needed
to estimate impact—and is often justified by reference to Kyle (1985) and Huberman and
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Figure 1: Plot of the price response to a worked order in the Bolsa de Madrid
(BME) and the London Stock Exchange (LSE) (from Moro et al. (2009)). At
time t/T = 0 the order starts and at time t/T = 1 the order completes. See
Moro et al. (2009) for details.

the price reversion described in (2) results solely from compensation costs to
liquidity providers or to market imperfections,5 but as we show, it also can
result when liquidity providers receive no revenue. Finally, the result in (3),
although widely known amongst practitioners, has been largely ignored in the
microstructure literature.

The intuition behind our results is straightforward: When a large order is split
and transacted over time, it produces predictability in order flow that the mar-
ket observes and uses to anticipate further transactions from the order (from
hereon we refer to the unsplit order as an order and to the small transacted

Stanzl (2004). Unlike the Kyle (1985) model, our model is based on order size distributions
that are non-Gaussian. The linear impact result of Huberman and Stanzl (2004) depends
on the assumption that impact is completely permanent and that the market cannot discern
split orders from complete orders. The two forms of impact we derive in this paper violate
these assumptions.

5For a review article that includes discussion on the temporary component of impact
see Stoll (2000).
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pieces as transactions6). If the later transactions are more predictable than
the earlier ones (we describe the conditions where this holds below), they im-
pact the price less and the price response is a nonlinear and concave function
of total order size. In addition, prices revert after an order completes due to
the market’s anticipation of further transactions from the order that do not
materialize. Finally, if liquidity providers cannot precisely determine which
transactions come from which orders, then an order that is executed quickly is
indistinguishable from several orders transacting in the same direction at the
same time, causing prices to react more abruptly than they would have, had
the order been transacted slowly.

The model we use for worked order execution is based on a simple strategy
where an active order attempts to transact a constant fraction of volume in
the market.7 Because the order transacts over time, it leaves a footprint that
is observed and used to modify future transaction prices. The exact way that
prices are modified depends on the information available to liquidity providers,
which we bracket between two extremes in our analysis. First, we assume that
liquidity providers cannot determine which transactions come from which or-
ders, so that they use a simple autoregressive model to predict future order
flow. This is similar to Hasbrouck (1988) and Madhavan, Richardson, and
Roomans (1997). We call this the autoregressive model. Second, we assume
that liquidity providers can discern each order separately, as if each trans-
action in the market had a ‘color’ that can be used to associate it with it’s
corresponding parent order. We call this the colored print model. In the col-
ored print model, liquidity providers predict future order flow by calculating
the probability that an order continues transacting conditioned on observing
that the order has transacted the observed number of pieces so far. Pricing is
therefore similar to price schedules that are set using ‘tail expectations’ in a
limit order market8, although here the analysis is in a dynamic setting. The
colored print model is also similar to the ‘fast execution’ of a worked order in
Back and Baruch (2007).

The model we use for price response is based on previous structural models
that assume trades convey information to the market (Glosten and Harris
(1988), Hasbrouck (1988), Madhavan, Richardson and Roomans (1997)). As is
common in many of these models (see Hasbrouck (2007)), our model subtracts
off the predictable component of order flow when determining price impact.

6Practitioners sometimes refer to these as parent orders and child orders respectively.
7The strategy is similar to a VWAP or “volume weighted average price” strategy, which

is a standard execution strategy for worked orders.
8See Glosten (1994).
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We therefore make an implicit assumption that prices respond symmetrically
for a ‘predicted’ vs. an ‘unpredicted’ transaction. We discuss this assumption
and its significance below. The assumption is relaxed in Farmer, Gerig, Lillo,
and Waelbroeck (2010), where it is replaced by a ‘fair pricing’ condition that
states the average execution price of an order should equal the final market
price after the order completes.

This work was originally inspired by two empirical findings that are closely
related to each other. First, that the size distribution of orders is asymptot-
ically Pareto, and second that order flow in markets is highly autocorrelated
and predictable.9 The Pareto tail of the order size distribution was originally
reported for the NYSE by Gopikrishnan et al. (2000) and has been verified for
several other markets (Plerou et al. (2004)). The extreme predictability of or-
der flow was reported independently by two groups of researchers who showed
that buying and selling in markets exhibits long-term persistence (Lillo and
Farmer (2004) and Bouchaud et al. (2004)). Lillo, Mike, and Farmer (2005)
develop a model where these two observations are not independent, and where
the long memory of order flow results from the splitting of orders that are
drawn from a size distribution that is Pareto. Here, we explore how orders
from a Lillo, Mike, and Farmer (2005) model are priced in an efficient market.

Finally, our work is related to the growing literature on the optimal execution
of orders.10 These papers take as given the price impact function and then
optimize order placement according to the preferences of the individual trans-
acting the order. Here, we are interested in the more fundamental question of
why prices respond in the way that they do.

II. MODEL

A. Model of Worked Order Execution

We model the situation where an investor wishes to buy or sell a certain
quantity of a security, but where the market only allows one unit at a time
to be bought or sold. Orders, therefore, must be worked—they must be split

9This predictability is so long-lived that, for many securities, if you were to observe a
buyer initiated transaction on a certain day, there is a greater than 50% chance that an
observed transaction several weeks later will also be buyer initiated (see Lillo and Farmer
(2004)).

10See Bertsimas and Lo (1998), Almgren and Chriss (2000), and Obizhaeva and Wang
(2006)
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into unit-sized pieces that are transacted one at a time. To reduce confusion,
we refer to full-sized orders as orders and to the unit-sized pieces of an order
as transactions. An order, indexed by i, is defined by three parameters, Ψi =
{εi, πi, Ni}. εi is the sign of the order—whether it is a buy (εi = +1) or a
sell (εi = −1), πi is the participation rate of the order—the probability per
unit time that the order transacts, and Ni is the size, or the number of units,
in the order. We assume that πi is constant (although possibly different for
different orders), which means that investors use a type of VWAP (or volume
weighted average price) strategy, where an order attempts to participate in
a certain constant fraction of all market transactions. These strategies are
common in financial markets, and we leave more complicated strategies for
future analysis. Time is denoted t and is measured in units of trades, i.e., it
is updated by one whenever a trade occurs in the market. The times when
each transaction from an order are submitted are denoted t(1,i), t(2,i), . . . , t(N,i),
and the total number of transactions that have been submitted by an order at
time t is labeled ni(t).

B. Structural Model of Price Formation

Each transaction that is submitted by an investor is priced centrally at the
market by a group of competitive, risk-neutral liquidity providers. Transac-
tion prices, therefore, are set to the expected value of the security given that
the transaction has occurred, and they follow a martingale (see Glosten and
Milgrom (1985)). If Ωt−1 is the information available to liquidity providers at
time t − 1 and pt is the post-trade expected value of the security at time t,
then,

E[pt|Ωt−1] = pt−1. (1)

Notice that pt is both the post-trade expected value of the security and also
the transaction price. These values are the same because we do not consider
any revenue for liquidity providers. Thus, the results we derive for impact
(and specifically the temporary effects that we describe later) are independent
of any liquidity provider costs or profits.

We assume that liquidity providers update the estimated value of a security
using two sources of information: (1) public news events and (2) order flow
in the market, i.e., whether transactions are buys or sells.11 The update in

11Order flow causes liquidity providers to update their estimated value because we assume
there is a positive probability that transactions originate from informed individuals.
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estimated value due to public news events is denoted εt; it covers all news
released between times t − 1 and t. We assume εt is an independent and
identically distributed random variable with mean zero. We assume that a
transaction, by itself, causes a value revision of xtλ, where xt is the sign of the
transaction (xt = +1 for a buy and xt = −1 for a sell) and λ > 0 is a scale
parameter that measures the degree of information asymmetry for the security.
If transactions were not predictable, then we would write our structural model
as, pt = pt−1 + xtλ + εt.

12 However, transactions are highly autocorrelated
and predictable in real markets due to the working of orders (this means
E[xt|Ωt−1] 6= 0 and our structural model would violate Eq. 1). To fix this
problem, we introduce a term, γt, that compensates for the predictability of
order flow,

pt = pt−1 + (xt − γt)λ+ εt. (2)

Enforcing Eq. 1, we find that E[γt|Ωt−1] = E[xt|Ωt−1]. In general, γt can de-
pend on xt, but we will assume that prices respond symmetrically for a ‘pre-
dicted’ transaction, xt = Sign(E[xt|Ωt−1]), vs. an ‘unpredicted’ transaction,
xt 6= Sign(E[xt|Ωt−1]), so that γt is the same in either case.13 This assumption
forces γt = E[xt|Ωt−1]. Defining x̂t ≡ E[xt|Ωt−1], our final structural model
for price formation is,

pt = pt−1 + (xt − x̂t)λ+ εt. (3)

As in Hasbrouck (1988) and Madhavan, Richardson and Roomans (1997), it
is the innovation in order flow, (xt − x̂t), that causes liquidity providers to
update their beliefs.14

C. Predictability of Order Flow

The specific form of x̂t is dependent on the structure of the market and the pre-
diction model used by liquidity providers. Markets can have different rules for
broadcasting order flow information, so that information available to liquidity
providers, Ωt, is not necessarily standard across markets. Even with a specific

12This equation is similar to the structural model in Glosten and Harris (1988) when the
revenue of liquidity providers is assumed zero.

13Farmer, Gerig, Lillo, and Waelbroeck (2010) use an alternative assumption.
14Our model is very similar to the structural model used in Madhavan, Richardson, and

Roomans (1997), except here we assume no revenue for liquidity providers and we allow the
predicted component of xt to be influenced by the entire information set of the liquidity
provider and not just xt−1.
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information set, the model that is used by liquidity providers to predict order
flow may or may not optimally utilize this information. In this section, we
first present a baseline autoregressive model for x̂t that is similar to what has
been proposed elsewhere (see Hasbrouck (2007)).15 This model assumes that
only the signs of transactions are used to determine x̂t. Second, we present a
specific extreme case where x̂t is determined using precise order information,
specifically ni(t) and πi for all orders in the market. In this scenario, the only
information that is unknown to liquidity providers is the total size of an order
and when it will complete.

Assuming that liquidity providers only use information about past trade signs,
xt, and that an autoregressive model is used to predict current order flow, then

x̂t =
∑
k>0

akxt−k. (4)

We call this model for the predictability of order flow the autoregressive model.

If liquidity providers can discern each order separately (as if each transaction
in the market had a ‘color’ that associated it with its corresponding parent
order), then xt can be estimated more precisely than with an autoregressive
model. Assuming transaction prints are ‘colored’ so that order information
ni(t) and πi is available to liquidity providers,16

x̂t =
∑
i

εiπiP(ni(t)), (5)

where P(ni(t)) is the probability that the ith order is still actively transacting,
given that it has so far transacted n pieces at time t. This equation sums
the probability that each order will transact based on complete information
about the transactions of that order. To complete the setup, we assume that
the end of order i is signaled or realized with probability πi at each time step
after it has completed and that P = 0 for that order from then on. This
ensures that the time between the transactions of an order does not influence
the calculation of P(ni(t)).

17 We call this model for the predictability of order
flow the colored print model.

15See also Bouchuad et al. (2004) and Bouchaud, Kockelkoren, and Potters (2006). The
impact functions in these papers can be shown to result from an autoregressive model for
order flow (see Gerig (2007)).

16Technically, πi, would need to be estimated, but we assume it is given.
17For simplicity, in this paper we do not consider the more complicated case when the

end of an order is determined, on average, at an interval larger or smaller than 1/πi.
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The motivation for focusing on these two scenarios is the following. In most
markets, transaction information is broadcast to all participants directly after
the transaction, and in most cases, the initiator of the transaction, xt, can
be determined. Therefore, the use of an autoregressive model to predict order
flow should be uncontroversial. We treat the autoregressive model as a baseline
model for order flow predictability because of this. For several reasons, order
flow might be more predictable than the autoregressive model. In general, the
counterparties involved in a transaction are anonymous, so that transactions
do not have a ‘color’. However, in some markets this information is available
to a select number of liquidity providing individuals, such as specialists at the
NYSE. Other markets have experimented with broadcasting this information,
e.g., NASDAQ Pathfinders.18 Even if not broadcast, there might be ways to
determine the likely presence of a large order that continually transacts in
a predictable way. In a market where prices are determined by individuals
with privileged information about split orders or in a market where order
information is broadcast or is discernable, the predictability of transaction sign
is better modeled by Eq. 5 than Eq. 4. In reality, we would expect markets to
operate somewhere between these two extreme models.

III. PRICE RESPONSE TO WORKED ORDERS

In this section, we derive how prices respond to worked orders using the struc-
tural model of the previous section. We define a price impact function, R(t|Ψ)
that measures the average price response at time t due to an order with given
parameters, Ψ. This function measures the price response due to a trade in
the direction of the trade, so that it is positive both when buy transactions
increase the price and when sell transactions lower the price. Based on the
empirical results of Gopikrishnan et al. (2000), Plerou et al. (2004), Vaglica
et al. (2008), and Moro et al. (2009), we assume that order sizes are Pareto
distributed, g(N) = αN−(α+1), with α < 2 and that order signs, εi are uncorre-
lated. The following set of propositions hold (proofs are given in the appendix):

PROPOSITION 1. For the autoregressive model, the price response to an
order while it is transacting is concave and is given by the following approxi-
mate equation:

18See https://data.nasdaq.com/Path.aspx
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R (tn|Ψ) ≈ 2λ

α
π(1−α

2 )n
α
2

(
1 +O

[
1

n

])
. (6)

The autoregressive coefficients are positive at all lags k, which makes the later
transactions of an order more predictable than the earlier transactions (the
sign of the earlier transactions are included in the sum of Eq. 4 and therefore
increase x̂t). Because the later pieces are more predictable, they impact the
price less and total impact is a concave function of the amount traded.

COROLLARY TO PROPOSITION 1. For the autoregressive model, im-
pact is larger for quickly transacted orders and smaller for slowly transacted
orders.

This follows immediately from the equation for impact in Proposition 1. In
the autoregressive model, the price response to a single transaction decays in
time as the transaction influences later prices through the autoregressive co-
efficients in Eq. 4. An order that transacts at a higher participation rate, π,
does not allow as much time for the price decay of the individual transactions
to occur, and therefore causes a larger overall price response.

PROPOSITION 2. For the colored print model, the price response to an
order while it is transacting is concave and is given by the following approxi-
mate equation:

R (tn|Ψ) ≈ λ[1 + α log(n)] +O
[

1

n

]
. (7)

In the colored print model, the later transactions of an order are more pre-
dictable than the earlier transactions. This occurs because the probability that
an order continues, P(n), increases with n for Pareto distributed order sizes
(which means x̂ in Eq. 5 increases as n increases). Because the later pieces
are more predictable, they impact the price less and total impact is a concave
function of the amount traded.

There are two notable differences between the price impact of a worked order
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in the autoregressive vs. the colored print model. (1) The speed of execution
affects the impact in the autoregressive model but does not in the colored print
model. When prints are colored, liquidity providers can discern the difference
between one order transacting quickly and two orders of the same sign trans-
acting slowly but simultaneously. These two scenarios are indistinguishable in
the autoregressive model. Quickly worked orders, therefore, receive a worse
price in the autoregressive model. Notice that adding a small amount of noise
to the ‘color’ of a transaction would cause quicker orders to also impact the
price more than slower orders in the colored print model. (2) Impact is asymp-
totically larger in the autoregressive model than in the colored print model.
This result is not surprising considering that liquidity providers use more in-
formation in the colored print model than they do in the autoregressive model,
and therefore can make better predictions about order flow. When order flow
is more predictable, it impacts the price less. This doesn’t mean that impact
is always less if transaction prints are colored, instead it means that impact is
shifted to the beginning of an order because the later transactions are better
‘announced’ by the earlier transactions.19

PROPOSITION 3. For the autoregressive model, when an order completes,
prices revert as an inverse power of the time since completion. The reversion
is given by the following approximate equation:

R(tN + τ |Ψ) ≈ λN
1

τ(1−α
2 )

(
1−O

[
1

τ

])
. (8)

In the autoregressive model, prices revert after the order completes because
the transactions of the order continue to influence prices through the autore-
gressive coefficients in Eq. 4. This influence is in the opposite direction of the
order, which means prices revert.

As τ → ∞, the order’s impact reverts completely.20 In reality, liquidity
providers would have some upper bound for the lag k in Eq. 4, which would
result in at least a portion of the impact being permanent.

19The scale of the price response to a single transaction, λ, should be different in the two
models.

20Full reversion also occurs in Bouchuad et al. (2004) and Bouchaud, Kockelkoren, and
Potters (2006).
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PROPOSITION 4. For the colored print model, when an order completes,
prices revert exponentially in time to an amount λP(N) less than the original
impact. The reversion is given by the following approximate equation:

R(tN + τ |Ψ) ≈ λ {1 + α log(N)− P(N) [1− (1− π)τ ]}+O
[

1

N

]
. (9)

In the colored print model, prices revert because it takes time for liquidity
providers to become aware that the order has finished. x̂t is therefore valued
and continues to influence prices (in the opposite direction of the order) even
after the order completes. Another way to demonstrate the reversion is the
following: because liquidity providers assign some probability to the order
continuing on and further influencing prices, then prices must respond in the
other direction if the order does not continue. Otherwise prices would not
follow a martingale.

In comparison to the autoregressive model, the price reversion in the colored
print model is faster but not as pronounced: orders have permanent impact
on the colored print model, but do not in the autoregressive model.

IV. CONCLUSIONS

Due to recent changes in the structure of financial markets, it has become
relatively easy to work an order—to transact the order piecemeal over time. As
a result, many orders that previously would have transacted in one lot are now
worked. This has had dramatic effects on order flow variables, with average
transaction sizes plummeting and the number of transactions skyrocketing.
There exists little previous work that analyzes how these changes affect price
formation. This paper attempts to fill that void.

By applying a structural model to incrementally transacted orders, we analyze
how prices fluctuate in a market where orders are worked. As demonstrated,
our results replicate several empirical findings that have otherwise been diffi-
cult to theoretically explain: (1) we find that prices respond in a nonlinear and
concave way as an order is transacted, (2) that prices revert, at least partially,
after an order completes, and (3) that slowly transacting an order, in general,
causes a smaller price response.

The details of our results depend on the particular information available to
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liquidity providers, which we bracket between two extremes. When liquidity
providers only use past transaction data to predict order flow, then impact
increases as a power of time. When transaction prints are ‘colored’, so that
they can be associated with their parent orders, then order flow predictability
is greatly increased and impact is asymptotically smaller: it increases logarith-
mically in time. In addition, the reversion is different for the two scenarios; it is
quicker but less pronounced when prints are colored. These differences should
be of interest to investors, regulators, and market designers; all of whom have
power in deciding what information is broadcast to liquidity providers.

The differences in price response for the two models are also theoretically
interesting. If transaction prints are colored, then liquidity provision reduces
to a dynamic version of Glosten (1994) and prices are set to ‘tail-expectations’.
This is the usual method used to predict the impact of orders with various sizes.
It is highly unlikely that liquidity providers can precisely determine transaction
color in real markets. A more likely scenario is that colors are noisy and that
price response is somewhere between the two scenarios we analyze.

12



APPENDIX

Proof of Proposition 1

The expected price impact of a hidden order with parameters, Ψ = {ε, π,N}
measured from when the order starts to the time when it completes, T = tN ,
is,

R (tN |Ψ) = εEΨ

[
tN∑
t=t1

pt − pt−1

]
,

= λN − ελEΨ

[
tN∑
t=t1

x̂t

]
. (10)

For the autoregressive model, the coefficients ak can be estimated as follows.
Given that order sizes are power law distributed, g(N) = αN−(1+α), and that
orders are split into pieces and transacted, then the resulting order flow time
series, xt, exhibits long memory with Hurst exponent H = 3/2 − α/2 (see
Lillo, Mike, and Farmer (2005)). The coefficients ak can be determined by
modelling xt as a FARIMA(0, H − 1/2, 0) process, where in the large k limit,
ak ∼ k−H−1/2.

ελEΨ

[
tN∑
t=t1

x̂t

]
= λEΨ

[
N∑
n=1

tN−tn∑
k=1

ak

]
,

≈ λ
N∑
n=1

(
1− EΨ

[
(tN − tn)−(1−α

2 )
])
,

≈ λ

N∑
n=1

(
1− π(1−α

2 ) Γ[N − n− (1− α/2)]

Γ[N − n]

)
,

≈ λ
N∑
n=1

[
1− π(1−α

2 )

(N − n)(1−α
2 )

(
1 +O

[
1

N − n

])]
,

≈ λ

[
N − 2

α
π(1−α

2 )N
α
2

(
1 +O

[
1

N

])]
. (11)

This uses ak ≈ (1−α/2)kα/2−2 for a FARIMA process with H = 3/2−α/2 and
that tN − tn is gamma distributed. The sums are approximated by converting
to integrals over the intervals [1, tN − tn] and [0, N ] respectively. The total
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impact for the autoregressive model is therefore,

R (tN |Ψ) ≈ 2λ

α
π(1−α

2 )N
α
2

(
1 +O

[
1

N

])
. (12)

Proof of Proposition 2

For the colored print model,

ελEΨ

[
tN∑
t=t1

x̂t

]
= πλEΨ

[
N−1∑
n=1

tn+1∑
t=tn+1

P(n(t))

]
,

= πλ
N−1∑
n=1

P(n)EΨ

[
tn+1∑

t=tn+1

1

]
,

= πλ
N−1∑
n=1

P(n)EΨ [tn+1 − tn] ,

= λ
N−1∑
n=1

P(n),

≈ λ

[
N − 1− α log(N) +O

[
1

N

]]
. (13)

This uses that P(n) ≈ 1− α/n+O[1/n]2 for the given order size distribution
and that tn+1− tn is exponentially distributed. The sum is approximated with
an integral over the interval [1, N ]. The total impact for the colored print
model is therefore,

R (tN |Ψ) ≈ λ[1 + α log(N)] +O
[

1

N

]
. (14)

14



Proof of Proposition 3

Consider the total impact of an order measured at some time τ after the order
has completed,

R(tN + τ |Ψ) = εEΨ

[
tN+τ∑
t=1

pt − pt−1

]
,

= λN − ελEΨ

[
tN+τ∑
t=1

x̂t

]
, (15)

For the autoregressive model,

ελEΨ

[
tN+τ∑
t=1

x̂t

]
= λEΨ

[
N∑
n=1

tN+τ−tn∑
k=1

ak,

]
,

= λ
N∑
n=1

(
1− EΨ

[
(tN + τ − tn)−(1−α

2 )
])
,

≈ λ
N∑
n=1

[
1− 1

τ(1−α
2 )

(
1−O

[
1

τ

])]
,

≈ λN

[
1− 1

τ(1−α
2 )

(
1−O

[
1

τ

])]
. (16)

The impact after the order completes in the autoregressive model is therefore,

R(tN + τ |Ψ) ≈ λN
1

τ(1−α
2 )

(
1−O

[
1

τ

])
. (17)

Proof of Proposition 4

For the colored print model,

ελEΨ

[
tN+τ∑
t=t1

x̂t

]
= ελEΨ

[(
tN∑
t=t1

x̂t +

tN+τ∑
t=tN+1

x̂t

)]
, (18)

15



We have already calculated the expectation of the first sum in parantheses,
which resulted in Eq. 13. Focusing on the second sum,

ελEΨ

[
tN+τ∑
t=tN+1

x̂t

]
= πλEΨ

[
tN+τ∑
t=t1

P(n(t))

]
,

= πλP(N)EΨ

[
τ∑
k=1

(1− π)(k−1)

]
,

= λP(N) [1− (1− π)τ ] . (19)

Combining these together,

ελEΨ

[
tN+τ∑
t=t1

x̂t

]
≈ λ

(
N − 1− α log(N) + P(N) [1− (1− π)τ ] +O

[
1

N

])
.

(20)
The impact after the order completes in the colored print model is therefore,

RH(tN + τ |Ψ) ≈ λ (1 + α log(N)− P(N) [1− (1− π)τ ]) +O
[

1

N

]
. (21)
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